Исследователи представили новые методики ускорения обработки разреженных тензоров для масштабных ИИ-моделей.
Ученые из MIT и NVIDIA разработали две методики, которые ускоряют обработку разреженных тензоров, структур данных, используемых для высокопроизводительных вычислений. Эти методики могут значительно улучшить производительность и энергоэффективность систем, таких как масштабные модели машинного обучения, используемые в генеративном искусственном интеллекте.
Тензоры – это структуры данных, которые используют модели машинного обучения. Оба новых метода направлены на эффективное использование разреженности в тензорах, позволяя пропускать нулевые значения и экономить вычислительные ресурсы и память. Однако использование разреженности не лишено проблем. Например, определение ненулевых значений в больших тензорах – сложная задача.
Исследователи из MIT и NVIDIA предложили два решения. Для просмотра ссылки Войдиили Зарегистрируйся позволяет аппаратным средствам эффективно находить ненулевые значения для различных шаблонов разреженности. Второе решение увеличивает использование буфера хранения и снижает трафик внешней памяти.
Один из разработанных акселераторов, HighLight, может обрабатывать различные шаблоны разреженности и эффективно работать даже с моделями без нулевых значений. Исследователи использовали "иерархическую структурированную разреженность" для представления различных шаблонов разреженности.
Для просмотра ссылки Войдиили Зарегистрируйся названный "Tailors" и "Swiftiles", позволяет эффективно "перебронировать" данные для ускорения рабочих нагрузок. Этот метод быстро оценивает идеальный размер блока данных, экономя вычислительные ресурсы. Комбинация этих методов удваивает скорость и снижает энергопотребление в два раза по сравнению с существующими акселераторами.
"Swiftiles позволяет нам оценить, каким должен быть размер этих блоков без необходимости многократного уточнения оценки. Это становится возможным благодаря поддержке перебронирования", - говорит Xue, один из авторов разработки.
В будущем исследователи планируют применить идею перебронирования к другим аспектам компьютерной архитектуры и усовершенствовать процесс оценки оптимального уровня перебронирования.
Ученые из MIT и NVIDIA разработали две методики, которые ускоряют обработку разреженных тензоров, структур данных, используемых для высокопроизводительных вычислений. Эти методики могут значительно улучшить производительность и энергоэффективность систем, таких как масштабные модели машинного обучения, используемые в генеративном искусственном интеллекте.
Тензоры – это структуры данных, которые используют модели машинного обучения. Оба новых метода направлены на эффективное использование разреженности в тензорах, позволяя пропускать нулевые значения и экономить вычислительные ресурсы и память. Однако использование разреженности не лишено проблем. Например, определение ненулевых значений в больших тензорах – сложная задача.
Исследователи из MIT и NVIDIA предложили два решения. Для просмотра ссылки Войди
Один из разработанных акселераторов, HighLight, может обрабатывать различные шаблоны разреженности и эффективно работать даже с моделями без нулевых значений. Исследователи использовали "иерархическую структурированную разреженность" для представления различных шаблонов разреженности.
Для просмотра ссылки Войди
"Swiftiles позволяет нам оценить, каким должен быть размер этих блоков без необходимости многократного уточнения оценки. Это становится возможным благодаря поддержке перебронирования", - говорит Xue, один из авторов разработки.
В будущем исследователи планируют применить идею перебронирования к другим аспектам компьютерной архитектуры и усовершенствовать процесс оценки оптимального уровня перебронирования.
- Источник новости
- www.securitylab.ru