Новости Кулинарная физика: майонез на передовой энергетической революции

NewsMaker

I'm just a script
Премиум
13,883
20
8 Ноя 2022
Исследователи Лихайского университета нашли неожиданный способ изучения плазменных нестабильностей.


l41a4y08bwdc4z4yiiqb8mm7o1tylus4.jpg


Исследователи из Университета Лихай изучают майонез, чтобы раскрыть секреты ядерного синтеза, потенциального источника неограниченной и чистой энергии. Их Для просмотра ссылки Войди или Зарегистрируйся основывается на предыдущих работах, опубликованных в 2019 году, в которых также использовался майонез для понимания физики синтеза.

Майонез используется из-за своего свойства вести себя как твердое вещество, которое при воздействии градиента давления начинает течь. Это поведение имитирует поведение плазмы в аналогичных условиях.

Ядерный синтез, процесс, питающий Солнце, может стать источником неограниченной энергии, но воспроизведение экстремальных условий Солнца на Земле представляет собой значительную задачу. Один из методов достижения синтеза — это инерциальный термоядерный синтез (ICF). В этом методе маленькие капсулы, наполненные изотопами водорода, сжимаются и нагреваются до состояния плазмы, заряженного состояния вещества, способного генерировать энергию при экстремальных температурах и давлениях.

Основная проблема инерциального термоядерного синтеза — это образование гидродинамических нестабильностей, таких как Для просмотра ссылки Войди или Зарегистрируйся Она возникает, когда материалы с разной плотностью подвергаются противоположным градиентам давления и плотности. В мягких материалах, обладающих значительным сопротивлением к деформации, эта нестабильность снижает выход энергии.

Для изучения нестабильности Релея-Тейлора в контролируемых условиях команда исследователей использовала майонез. Специально созданная вращающаяся установка в лаборатории турбулентного смешения имитировала условия течения плазмы.

Использование майонеза позволило исследователям изучить нестабильность без необходимости создания экстремальных температур и давлений, что сложно достичь и контролировать в лабораторных условиях. Команда изучила, как свойства материала, геометрия возмущений и скорость ускорения влияют на переход между различными фазами нестабильности Релея-Тейлора.

Исследователи выявили условия, при которых возможно эластическое восстановление, когда материал возвращается к своей первоначальной форме после снятия напряжения. Эти данные могут помочь в проектировании капсул для синтеза, которые могут оставаться стабильными и эффективными.

Эти открытия важны для улучшения процесса синтеза и могут привести к созданию стабильных капсул, которые не становятся нестабильными, что значительно повысит эффективность термоядерного синтеза как источника энергии.
 
Источник новости
www.securitylab.ru

Похожие темы